Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654149

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Adenosine Triphosphate , Esophagus , KATP Channels , Muscle, Smooth , Receptors, Purinergic P2Y , Animals , Rats , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Male , Receptors, Purinergic P2Y/metabolism , Esophagus/drug effects , Esophagus/physiology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , KATP Channels/metabolism , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Rats, Wistar , Muscle Contraction/drug effects , Muscle Contraction/physiology , Purinergic P2Y Receptor Antagonists/pharmacology , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Rats, Sprague-Dawley
2.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G195-G204, 2024 02 01.
Article En | MEDLINE | ID: mdl-38111988

Patients with Parkinson's disease (PD) often have constipation. It is assumed that a disorder of the regulatory mechanism of colorectal motility by the central nervous system is involved in the constipation, but this remains unclear. The aim of this study was to investigate whether central neural pathways can modulate colorectal motility in a rat model of PD. PD model rats were generated by injection of 6-hydroxydopamine into a unilateral medial forebrain bundle and destruction of dopaminergic neurons in the substantia nigra. Colorectal motility was measured in vivo in anesthetized rats. Intraluminal administration of capsaicin, as a noxious stimulus, induced colorectal motility in sham-operated rats but not in PD rats. Intrathecally administered dopamine (DA) and serotonin (5-HT), which mediate the prokinetic effect of capsaicin, at the L6-S1 levels enhanced colorectal motility in PD rats similarly to that in sham-operated rats. In PD rats, capsaicin enhanced colorectal motility only when a GABAA receptor antagonist was preadministered into the lumbosacral spinal cord. Capsaicin-induced colorectal motility was abolished by intrathecal administration of a D2-like receptor antagonist but not by administration of 5-HT2 and 5-HT3 receptor antagonists. These findings demonstrate that the inhibitory GABAergic component becomes operative and the stimulatory serotonergic component is suppressed in PD rats. The alteration of the central regulatory mechanism of colorectal motility is thought to be related to the occurrence of constipation in PD patients. Our findings provide a new insight into the pathogenesis of defecation disorders observed in PD.NEW & NOTEWORTHY In a rat model of Parkinson's disease, the component of descending brain-spinal pathways that regulate colorectal motility through a mediation of the lumbosacral defecation center was altered from stimulatory serotonergic neurons to inhibitory GABAergic neurons. Our findings suggest that chronic constipation in Parkinson's disease patients may be associated with alterations in central regulatory mechanisms of colorectal motility. The plasticity in the descending pathway regulating colorectal motility may contribute to other disease-related defecation abnormalities.


Colorectal Neoplasms , Parkinson Disease , Humans , Rats , Animals , Rats, Sprague-Dawley , Capsaicin/pharmacology , Serotonin/metabolism , Brain/metabolism , Constipation/etiology , Oxidopamine
3.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G466-G475, 2023 06 01.
Article En | MEDLINE | ID: mdl-37096901

The supraspinal brain regions controlling defecation reflex remain to be elucidated. The purpose of this study was to determine the roles of the hypothalamic A11 region and the medullary raphe nuclei in regulation of defecation. For chemogenetic manipulation of specific neurons, we used the double virus vector infection method in rats. hM3Dq or hM4Di was expressed in neurons of the A11 region and/or the raphe nuclei that send output to the lumbosacral defecation center. Immunohistological and functional experiments revealed that both the A11 region and the raphe nuclei directly connected with the lumbosacral spinal cord through descending pathways composed of stimulatory monoaminergic neurons. Stimulation of the hM3Dq-expressing neurons in the A11 region or the raphe nuclei enhanced colorectal motility only when GABAergic transmission in the lumbosacral spinal cord was blocked by bicuculline. Experiments using inhibitory hM4Di-expressing rats revealed that enhancement of colorectal motility caused by noxious stimuli in the colon is mediated by both the A11 region and the raphe nuclei. Furthermore, suppression of the A11 region and/or the raphe nuclei significantly inhibited water avoidance stress-induced defecation. These findings demonstrate that the A11 region and the raphe nuclei play an essential role in the regulation of colorectal motility. This is important because brain regions that mediate both intracolonic noxious stimuli-induced defecation and stress-induced defecation have been clarified for the first time.NEW & NOTEWORTHY The A11 region and the raphe nuclei, constituting descending pain inhibitory pathways, are related to both intracolonic noxious stimuli-induced colorectal motility and stress-induced defecation. Our findings may provide an explanation for the concurrent appearance of abdominal pain and defecation disorders in patients with irritable bowel syndrome. Furthermore, overlap of the pathway controlling colorectal motility with the pathway mediating stress responses may explain why stress exacerbates bowel symptoms.


Colorectal Neoplasms , Raphe Nuclei , Animals , Rats , Medulla Oblongata , Raphe Nuclei/physiology , Spinal Cord/physiology
4.
J Smooth Muscle Res ; 59: 28-33, 2023.
Article En | MEDLINE | ID: mdl-37100618

Distinct sex differences in the prevalence and symptoms of abnormal bowel habits in patients with irritable bowel syndrome (IBS) have been reported. We have elucidated the sex differences in the regulation of colorectal motility via the central nervous system. Noxious stimuli in the colorectum of anesthetized male rats enhance colorectal motility by activating monoaminergic neurons in descending pain inhibitory pathways from the brainstem to the lumbosacral spinal cord. These monoaminergic neurons release serotonin and dopamine into the lumbosacral spinal cord, resulting in the increment of colorectal motility. In female rats, in contrast, noxious stimuli in the colorectum have no effect on colorectal motility. We clarified that GABAergic inhibition in the lumbosacral spinal cord masks the enhancement of colorectal motility induced by monoamines in female animals. Considering that IBS patients often show visceral hypersensitivity and hyperalgesia, our studies suggest that differences in the descending neurons that respond to painful stimuli are involved in various sex differences in abnormal bowel habits.


Colorectal Neoplasms , Irritable Bowel Syndrome , Female , Rats , Male , Animals , Rats, Sprague-Dawley , Sex Characteristics , Spinal Cord/physiology
5.
Am J Physiol Gastrointest Liver Physiol ; 323(1): G1-G8, 2022 06 01.
Article En | MEDLINE | ID: mdl-35438007

Our recent studies have shown that noxious stimuli in the colorectum enhance colorectal motility via the brain and spinal defecation centers in male rats. In female rats, however, noxious stimuli have no effect on colorectal motility. The purpose of this study was to determine whether sex hormones are major contributing factors for sex-dependent differences in neural components of the spinal defecation center. Colorectal motility was measured using an in vivo method under ketamine and α-chloralose anesthesia in rats. Capsaicin was administered into the colorectal lumen as noxious stimuli. Orchiectomy in male rats had no effect on the capsaicin-induced response of colorectal motility. However, in ovariectomized female rats, capsaicin administration enhanced colorectal motility, though intact female animals did not show enhanced motility. When estradiol was administered by using a sustained-release preparation in ovariectomized female rats, capsaicin administration did not enhance colorectal motility unless a GABAA receptor antagonist was intrathecally administered to the lumbosacral spinal cord. These findings suggest that estradiol allowed the GABAergic neurons to operate in response to intracolonic administration of capsaicin. The operation of GABAergic inhibition by the action of estradiol could be manifested in male rats only when the effects of male sex hormones were removed by orchiectomy. Taken together, our results indicate that sex hormones contribute to the sexually dimorphic response in colorectal motility enhancement in response to noxious stimuli through modulating GABAergic pathways.NEW & NOTEWORTHY This study demonstrated that estradiol permits inhibitory regulation in the spinal defecation center not only in female rats but also in orchiectomized male rats. GABAergic pathways are likely involved in the effect of estradiol. This is the first report showing that sex hormones affect colorectal motility through the alteration of neural components of the regulatory pathways. Our findings provide a novel insight into pathophysiological mechanisms of defecation disorders related to changes in sex hormones.


Colorectal Neoplasms , Gastrointestinal Motility , Animals , Capsaicin/pharmacology , Defecation/physiology , Estradiol/pharmacology , Female , Gastrointestinal Motility/physiology , Gonadal Steroid Hormones/pharmacology , Male , Rats , Rats, Sprague-Dawley
...